Differential protein pathways in 1,25-dihydroxyvitamin d(3) and dexamethasone modulated tolerogenic human dendritic cells

J Proteome Res. 2012 Feb 3;11(2):941-71. doi: 10.1021/pr200724e. Epub 2011 Dec 15.

Abstract

Tolerogenic dendritic cells (DC) that are maturation-resistant and locked in a semimature state are promising tools in clinical applications for tolerance induction. Different immunomodulatory agents have been shown to induce a tolerogenic DC phenotype, such as the biologically active form of vitamin D (1,25(OH)(2)D(3)), glucocorticoids, and a synergistic combination of both. In this study, we aimed to characterize the protein profile, function and phenotype of DCs obtained in vitro in the presence of 1,25(OH)(2)D(3), dexamethasone (DEX), and a combination of both compounds (combi). Human CD14(+) monocytes were differentiated toward mature DCs, in the presence or absence of 1,25(OH)(2)D(3) and/or DEX. Cells were prefractionated into cytoplasmic and microsomal fractions and protein samples were separated in two different pH ranges (pH 3-7NL and 6-9), analyzed by 2D-DIGE and differentially expressed spots (p < 0.05) were identified after MALDI-TOF/TOF analysis. In parallel, morphological and phenotypical analyses were performed, revealing that 1,25(OH)(2)D(3)- and combi-mDCs are closer related to each other than DEX-mDCs. This was translated in their protein profile, indicating that 1,25(OH)(2)D(3) is more potent than DEX in inducing a tolerogenic profile on human DCs. Moreover, we demonstrate that combining 1,25(OH)(2)D(3) with DEX induces a unique protein expression pattern with major imprinting of the 1,25(OH)(2)D(3) effect. Finally, protein interaction networks and pathway analysis suggest that 1,25(OH)(2)D(3), rather than DEX treatment, has a severe impact on metabolic pathways involving lipids, glucose, and oxidative phosphorylation, which may affect the production of or the response to ROS generation. These findings provide new insights on the molecular basis of DC tolerogenicity induced by 1,25(OH)(2)D(3) and/or DEX, which may lead to the discovery of new pathways involved in DC immunomodulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blotting, Western
  • Cell Differentiation / drug effects
  • Dendritic Cells / drug effects*
  • Dendritic Cells / metabolism*
  • Dexamethasone / pharmacology*
  • Electrophoresis, Gel, Two-Dimensional
  • Flow Cytometry
  • Humans
  • Mass Spectrometry
  • Metabolic Networks and Pathways
  • Oxidative Stress
  • Phenotype
  • Principal Component Analysis
  • Protein Interaction Maps / drug effects
  • Proteome / drug effects*
  • Proteome / metabolism
  • Signal Transduction / drug effects
  • Vitamin D / analogs & derivatives*
  • Vitamin D / pharmacology

Substances

  • Proteome
  • Vitamin D
  • 1,25-dihydroxyvitamin D
  • Dexamethasone