ZnO/CdS core/shell nanorod arrays were fabricated by a two-step method. Single-crystalline ZnO nanorod arrays were first electrochemically grown on SnO(2):F (FTO) glass substrates. Then, CdS nanocrystals were deposited onto the ZnO nanorods, using the successive ion layer adsorption and reaction (SILAR) technique, to form core/shell nanocable architectures. Structural, morphological and optical properties of the nanorod heterojunctions were investigated. The results indicate that CdS single-crystalline domains with a mean diameter of about 7 nm are uniformly and conformally covered on the surface of the single-crystalline ZnO nanorods. ZnO absorption with a bandgap energy value of 3.30 ± 0.02 eV is present in all optical transmittance spectra. Another absorption edge close to 500 nm corresponding to CdS with bandgap energy values between 2.43 and 2.59 eV is observed. The dispersion in this value may originate in quantum confinement inside the nanocrystalline material. The appearance of both edges corresponds with the separation of ZnO and CdS phases and reveals the absorption increase due to CdS sensitizer. The photovoltaic performance of the resulting ZnO/CdS core/shell nanorod arrays has been investigated as solar cell photoanodes in a photoelectrochemical cell under white illumination. In comparison with bare ZnO nanorod arrays, a 13-fold enhancement in photoactivity was observed using the ZnO/CdS coaxial heterostructures.