Extracellular recording has shown that dorsal horn neurons can have an inhibitory surround outside their excitatory receptive field, but cannot reveal inhibitory inputs within the excitatory field, or show the underlying excitatory and inhibitory synaptic inputs that determine net output. To study the underlying components of receptive field organization, in vivo patch-clamp recording was used to compare the size and distribution of subthreshold, suprathreshold, and inhibitory fields, in neurons in the mouse superficial medullary dorsal horn that were characterized by their responses to noxious and innocuous mechanical facial stimulation. Subthreshold excitatory fields typically extended some distance beyond the borders of the suprathreshold field, and also commonly exhibited broader stimulus selectivity, in that the majority of nociceptive-specific neurons exhibited subthreshold responses to brush. Separate voltage-clamp recording of excitatory and inhibitory inputs using different holding potentials revealed that inhibition could be evoked from both within and outside the excitatory field. In nociceptive neurons, inhibition tended to be maximal at the excitatory receptive field center, and was usually greater for pinch than brush, although the selectivity for pinch versus brush was not as great as with excitatory responses. Based on current data on dorsal horn organization, we propose that the localized peak of inhibition at the excitatory field center could be mediated by local interneurons, while the more widespread surrounding inhibition may depend on supraspinal circuitry.