Background: Vaccine regimens using different agents for priming and boosting have become popular for enhancing T cell and Ab responses elicited by candidate HIV/AIDS vaccines. Here we use a simian model to evaluate immunogenicity and protective efficacy of a recombinant modified vaccinia Ankara (MVA) vaccine in the presence and absence of a recombinant DNA prime. The simian vaccines and regimens represent prototypes for candidate HIV vaccines currently undergoing clinical testing.
Method: Recombinant DNA and MVA immunogens expressed simian immunodeficiency virus (SIV)mac239 Gag, PR, RT, and Env sequences. Vaccine schedules tested inoculations of MVA at months 0, 2, and 6 (MMM regimen) or priming with DNA at months 0 and 2 and boosting with MVA at months 4 and 6 (DDMM regimen). Twelve weekly rectal challenges with the heterologous SIV smE660 were initiated at 6 months following the last immunization.
Results: Both regimens elicited similar 61-64% reductions in the per challenge risk of SIVsmE660 transmission despite raising different patterns of immune responses. The DDMM regimen elicited higher magnitudes of CD4 T cells whereas the MMM regimen elicited higher titers and greater avidity Env-specific IgG and more frequent and higher titer SIV-specific IgA in rectal secretions. Both regimens elicited similar magnitudes of CD8 T cells. Magnitudes of T cell responses, specific activities of rectal IgA Ab, and the tested specificities for neutralization and antibody-dependent cellular cytotoxicity did not correlate with risk of infection. However, the avidity of Env-specific IgG had a strong correlation with the per challenge risk of acquisition, but only for the DDMM group.
Conclusions: We conclude that for the tested immunogens in rhesus macaques, the simpler MMM regimen is as protective as the more complex DDMM regimen.
Copyright © 2011 Elsevier Ltd. All rights reserved.