Multilayer DNA origami packed on hexagonal and hybrid lattices

J Am Chem Soc. 2012 Jan 25;134(3):1770-4. doi: 10.1021/ja209719k. Epub 2012 Jan 13.

Abstract

"Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / chemistry*
  • Models, Molecular
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure
  • Nanotechnology / methods
  • Nucleic Acid Conformation

Substances

  • DNA