Growing evidence indicates that G protein-coupled receptors can form homo- and hetero-oligomers to diversify signal transduction. However, the molecular mechanisms and physiological significance of G protein-coupled receptor-oligomers are not fully understood. Both ADOR1 (adenosine A(1) receptor) and TBXA2R (thromboxane A(2) receptor α; TPα receptor), members of the G protein-coupled receptor family, act on astrocytes and renal mesangial cells, suggesting certain functional correlations. In this study, we explored the possibility that adenosine A(1) and TPα receptors form hetero-oligomers with novel pharmacological profiles. We showed that these receptors hetero-oligomerize by conducting coimmunoprecipitation and bioluminescence resonance energy transfer (BRET(2)) assays in adenosine A(1) receptor and TPα receptor-cotransfected HEK293T cells. Furthermore, coexpression of the receptors affected signal transduction including the accumulation of cyclic AMP and phosphorylation of extracellular signal-regulated kinase-1 and -2 was significantly increased by high and low concentrations of adenosine A(1) receptor agonist and TPα agonists, respectively. Our study provides evidence of hetero-oligomerization between adenosine A(1) and TPα receptors for the first time, and suggests that this oligomerization affects signal transduction responding to different concentrations of receptor agonists.
Copyright © 2011 Elsevier B.V. All rights reserved.