The replication of integrated human immunodeficiency virus type 1 (HIV-1) is dependent on the cellular cofactor cyclin T1, which binds the viral Tat protein and activates the RNA polymerase II transcription of the integrated provirus. The activation of resting CD4(+) T cells upregulates cyclin T1 protein levels independently of an increase in cyclin T1 mRNA levels, suggesting a translational repression of cyclin T1 in resting CD4(+) T cells. Hypothesizing that microRNAs (miRNAs) repress cyclin T1 translation in resting CD4(+) T cells and that this inhibition is lifted upon cell activation, we used microarray expression analysis to identify miRNAs miR-27b, miR-29b, miR-150, and miR-223 as being significantly downregulated upon CD4(+) T cell activation. The overexpression of these miRNAs decreased endogenous cyclin T1 protein levels, while treatment with the corresponding antagomiRs increased cyclin T1 protein levels. An miR-27b binding site within the cyclin T1 3' untranslated region (3'UTR) was identified and confirmed to be functional after the mutation of key resides abrogated the ability of miR-27b to decrease the expression of a luciferase reporter upstream of the cyclin T1 3'UTR. Ago2 immunoprecipitation revealed an association with cyclin T1 mRNA that was decreased following treatment with miR-27b and miR-29b antagomiRs. Cells overexpressing miR-27b showed decreased viral gene expression levels of the HIV-1 reporter virus and a decreased replication of strain NL4.3; a partial rescue of viral transcription could be seen following the transfection of cyclin T1. These results implicate miR-27b as a novel regulator of cyclin T1 protein levels and HIV-1 replication, while miR-29b, miR-223, and miR-150 may regulate cyclin T1 indirectly.