The role of the ErbB3 receptor in signal transduction is to augment the signaling repertoire of active heterodimeric ErbB receptor complexes through activating the PI3K/AKT pathway, which in turn promotes survival and proliferation. ErbB3 has recently been proposed to be involved in acquired resistance to tyrosine kinase inhibitors (TKIs), and is therefore a promising new drug cancer target. Since ErbB3 is a kinase defective receptor, it cannot be targeted by small molecule inhibitors, whereas monoclonal antibodies may offer a viable strategy for pharmacological intervention. In this study, we have utilized DNA electroporation (DNA-EP) to generate a set of novel hybridomas directed against human ErbB3, which have been characterized for their biochemical and functional properties and selected for their ability to negatively regulate the ErbB3-mediated signaling pathway. In vitro, the anti-ErbB3 antibodies modulate the growth rate of cancer cells of different origins. In vivo they show antitumoral properties in a xenograft model of human pancreatic tumor and in the ErbB2-driven carcinogenesis genetically engineered mouse model (GEMM) for mammary tumor, the BALB/neuT. Our data confirm that downregulating the ErbB3-mediated signals with the use of anti-ErbB3 monoclonal antibodies is both feasible and relevant for therapeutic purposes and provides new opportunities for novel anti-ErbB3 combinatory strategies for cancer treatment.
Copyright © 2011 Wiley Periodicals, Inc.