Four proteoglycans and hyaluronan synthesized by cultured human bone cells were isolated using a two-step high-performance liquid chromatography system involving desalting and buffer exchange with a TSK-GEL HW 40(S) column followed by ion-exchange separation on a Nucleogen 4000-10 DEAE column. The desalting of 4 M guanidinium HCl extracts by a TSK-GEL HW 40(S) column equilibrated in a formamide:KH2PO4 buffer produces greater than 95% recoveries, enables quantitation of label incorporation and requires only 40 min to complete. The Nucleogen 4000-10 DEAE column utilizes the same buffer system and requires only 100 min for the resolution of four distinct types of proteoglycans. The formamide:KH2PO4 buffer system is compatible with a previously developed polyacrylamide gel system for the electrophoretic profiling of proteoglycans. After separation by charge density, proteoglycans were further resolved by size distribution using a calibrated TSK-GEL HW 75(F) column which also enabled the estimation of the apparent Mr of hyaluronan produced by the bone cells. The same TSK-GEL HW 40(S) resin is used to exchange pooled proteoglycans into buffers for analyzing enzyme digests of glycosaminoglycan chains and core proteins. The technique has been applied to the analysis of biosynthetically labeled proteoglycans produced in culture by fetal and adult human bone cells. A distinct pattern of proteoglycan size and secretion for both cell types could be shown using this method. The method of analysis is useful for high yield and rapid screening of various cell types for both biosynthetic rate studies and analysis of patterns of proteoglycan synthesis.