Electrochromic properties of a metallo-supramolecular polymer derived from tetra(2-pyridyl-1,4-pyrazine) ligands integrated in thin multilayer films

Langmuir. 2012 Feb 14;28(6):3332-7. doi: 10.1021/la204280e. Epub 2012 Feb 2.

Abstract

The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C(-1) at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.