The effects of systemic δ1-agonist on neurotransmission remains obscure, since no selective δ1-agonist exists that can penetrate the blood-brain barrier. Recently, we succeeded in synthesizing a putative δ1-receptor agonist, KNT-127, which has been demonstrated the effectiveness of systemic administration against anxiety and depressive-like behavior. To clarify the functional selectivity of KNT-127 and neurotransmission regulating system of δ1-receptor, the present study investigated the interaction between KNT-127 and δ-receptor antagonists on the release of dopamine, L-glutamate and GABA in nucleus accumbens (NAc), striatum and median pre-frontal cortex (mPFC) using multi-probe microdialysis. Intraperitoneal administration of KNT-127 increased the release of dopamine and L-glutamate in three regions, but decreased and increased GABA releases in respective NAc and mPFC without affecting that in striatum. The effects of KNT-127 in the three regions were abrogated by δ1-antagonist but not by δ2-antagonist. MK801 inhibited KNT-127-induced dopamine release in striatum and NAc, but enhanced that in mPFC, inhibited KNT-127-induced mPFC GABA release without affecting KNT-127-induced GABA reduction in NAc. Muscimol enhanced KNT-127-induced dopamine release in mPFC. Sulpiride inhibited KNT-127-induced reduction of GABA release in NAc. The results indicated that KNT-127 is a selective δ1-agonist, and suggested that δ1-receptor directly activates the release of dopamine and L-glutamate in the striatum, NAc and mPFC, but not that of GABA in the three regions. δ1-receptor indirectly inhibited GABA release in NAc via activated dopaminergic transmission, while δ1-receptor indirectly enhanced GABA release in mPFC via activated glutamatergic transmission.
Copyright © 2012 Elsevier Ltd. All rights reserved.