Purpose: Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) has been widely used in the management of colorectal cancer (CRC). However, the relationship between FDG accumulation and KRAS/BRAF mutations has not yet been investigated. The purpose of this study was to investigate whether KRAS/BRAF mutations affect FDG accumulation in CRC.
Experimental design: Retrospective analysis was conducted in 51 patients with CRC who underwent FDG-PET/computed tomographic (CT) scans for staging before primary tumor resection. The maximum standardized uptake value (SUV(max)) for the primary tumor and the tumor-to-liver ratio (TLR) were calculated from FDG accumulation and compared between KRAS/BRAF mutated and wild-type groups. Expression levels of glucose transporter-1 (GLUT1) and hexokinase type-II (HXK-II) were assessed by immunohistochemical analysis.
Results: Both SUV(max) and TLR were significantly higher in the KRAS/BRAF-mutated group compared with the wild-type group (P = 0.006 and 0.001, respectively). Multivariate analysis indicated that SUV(max) and TLR remained significantly associated with KRAS/BRAF mutations (P = 0.016 and 0.01, respectively). KRAS/BRAF status could be predicted with an accuracy of 75% when a SUV(max) cutoff value of 13 or 14 was used. GLUT1 expression in cancer cells was positively correlated with FDG accumulation and KRAS/BRAF status whereas HXK-II expression was not.
Conclusion: FDG accumulation was higher in CRC with KRAS/BRAF mutations. FDG-PET/CT scans may be useful for predicting the KRAS/BRAF status of patients with CRC and thus aid in determination of therapeutic strategies for patients with CRC.