Background: Chikungunya virus (CHIKV) outbreaks were previously restricted to parts of Africa, Indian Ocean Islands, South Asia, and Southeast Asia. In 2007, however, the first autochthonous CHIKV transmission was reported in Europe. High-level viremia, a mosquito vector that is also present in large urban areas of Europe and America, and uncertainty around the resistance of this Alphavirus toward physiochemical inactivation processes raised concerns about the safety of plasma derivatives. To verify the safety margins of plasma products with respect to CHIKV, commonly used virus inactivation steps were investigated for their effectiveness to inactivate this newly emerging virus.
Study design and methods: Pasteurization for human serum albumin (HSA), vapor heating for Factor VIII inhibitor bypassing activity, solvent/detergent (S/D) treatment for intravenous immunoglobulin (IVIG), and incubation at low pH for IVIG were investigated for their capacity to inactivate CHIKV and the closely related Sindbis virus (SINV). The obtained results were compared to previous studies with West Nile virus and the commonly used model virus bovine viral diarrhea virus.
Results: The data generated demonstrate the effective inactivation of CHIKV as well as SINV by the inactivation steps investigated and thereby support results from earlier validation studies in which model viruses were used.
Conclusion: High inactivation capacities with respect to CHIKV were demonstrated. This provides solid reassurance for the safety of plasma products and the results verify that the use of model viruses is appropriate to predict the inactivation characteristics of newly emerging viruses when their physicochemical properties are well characterized.
© 2012 American Association of Blood Banks.