High-speed jetting and spray formation from bubble collapse

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 2):015303. doi: 10.1103/PhysRevE.85.015303. Epub 2012 Jan 17.

Abstract

A method to create impacting jets at the micrometer length scale by means of a collapsing cavitation bubble is presented. A focused shock wave from a lithotripter leads to the nucleation of a cavitation bubble below a hole of 25 μm diameter etched in a silicon plate. The plate is placed at an air-water interface. The expansion and collapse of the bubble leads to two separate jets--an initial slow jet of velocity ∼10 m/s and a later faster jet of velocity ∼50 m/s. The jets subsequently impact coaxially, resulting in a circular sheet of liquid in the plane perpendicular to their axis. The sheet is characterized by a ring of droplets at its rim and breaks up into a spray as the shock pressure is increased. The results demonstrate an approach to create a high-speed jet and fine spray on demand at the micrometer scale.