The gold-doped cadmium telluride (Au:CdTe) nanocrystals were synthesized by aqueous solution route using L-glutathione and L-cysteine as stabilizers. As-prepared Au:CdTe nanocrystals have good monodispersity and a zinc-blende structure. Compared with undoped CdTe nanocrystals, the Au:CdTe nanocrystals exhibited improved photostability, higher cellular affinity, and lower cytotoxicity. The Au:CdTe nanocrystals were used as probes for long-term noninvasive fluorescence imaging in living cells (The human lung epithelial carcinoma A549 cells). They could be endocytic uptaken by A549 cells and stably labeled the cytoplasm for over a week. By transmission electron microscopy (TEM) analysis, the Au:CdTe NCs could be observed in vesicles after being uptaken by A549 cells. Doping semiconductor nanocrystals with gold has the potential to engineer the photostability and biocompatibility for extensive biomedical applications. This work developed a facile aqueous solution route to synthesize gold-doped semiconductor nanocrystals and may assist in the design of doped nanobiomaterials.