NMDA receptor/amyloid precursor protein interactions: a comparison between wild-type and amyloid precursor protein mutations associated with familial Alzheimer's disease

Neurosci Lett. 2012 May 2;515(2):131-6. doi: 10.1016/j.neulet.2012.03.029. Epub 2012 Mar 18.

Abstract

Two recent reports showed that amyloid precursor protein (APP) may contribute to postsynaptic mechanisms via the regulation of the surface trafficking of excitatory N-methyl-D-aspartate (NMDA) receptors. Here we have investigated the interactions and surface trafficking of NR1-1a/NR2A and NR1-1a/NR2B NMDA receptor subtypes with three APP mutations linked to familial Alzheimer's disease, APP695(Indiana), APP695(London) and APP695(Swedish). Flag-tagged mutated APP695s were generated and shown to be expressed at equivalent levels to wild-type APP695 in mammalian cells. Each APP mutant co-precipitated with NR1-1a/NR2A and NR1-1a/NR2B receptors following co-expression in mammalian cells. Further, as found for wild-type APP695, each enhanced NMDA receptor surface expression with no concomitant increase in total NR1-1a, NR2A or NR2B subunit expression. Thus these three familial APP mutations behave as wild-type APP695 with respect to their association with assembled NMDA receptors and their APP695-enhanced receptor cell surface trafficking.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / genetics
  • Alzheimer Disease / metabolism*
  • Amyloid beta-Protein Precursor / genetics
  • Amyloid beta-Protein Precursor / metabolism*
  • HEK293 Cells
  • Humans
  • Mutation
  • Protein Subunits / genetics
  • Protein Transport / genetics
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Transfection

Substances

  • Amyloid beta-Protein Precursor
  • Protein Subunits
  • Receptors, N-Methyl-D-Aspartate