Introduction: Screening assays have traditionally utilized reporter labels to quantify biological responses relevant to the disease state of interest. However, there are limitations associated with the use of labels that may be overcome with temporal measurements possible with label-free.
Areas covered: This review comprises general and system-specific information from literature searches using PubMed, published books and the authors' personal experience. This review highlights the label-free approaches in the context of various applications. The authors also note technical issues relevant to the development of label-free assays and their application to HTS.
Expert opinion: The limitations associated with the use of transfected cell lines and the use of label-based assays are gradually being realized. As such, greater emphasis is being placed on label-free biophysical techniques using native cell lines. The introduction of 96- and 384-well plate label-free systems is helping to broker a wider acceptance of these approaches in high-throughput screening. However, potential users of the technologies remain skeptical, primarily because the physical basis of the signals generated, and their contextual relevance to cell biology and signal transduction, has not been fully elucidated. Until this is done, these new technology platforms are more likely to complement, rather than replace, traditional screening platforms.