Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro.