Background: Newborns have frequent infections and manifest impaired vaccine responses, motivating a search for neonatal vaccine adjuvants. Alum is a neonatal adjuvant but might confer a T(H)2 bias. Toll-like receptor (TLR) agonists are candidate adjuvants, but human neonatal cord blood monocytes demonstrate impaired T(H)1-polarizing responses to many TLR agonists caused by plasma adenosine acting through cyclic AMP. TLR8 agonists, including imidazoquinolines (IMQs), such as the small synthetic 3M-002, induce adult-level TNF from neonatal monocytes, but the scope and mechanisms of IMQ-induced activation of neonatal monocytes and monocyte-derived dendritic cells (MoDCs) have not been reported.
Objective: We sought to characterize IMQ-induced activation of neonatal monocytes and MoDCs.
Methods: Neonatal cord and adult peripheral blood monocytes and MoDCs were cultured in autologous plasma; levels of alum- and TLR agonist-induced cytokines and costimulatory molecules were measured. TLR8 and inflammasome function were assayed by using small interfering RNA and Western blotting/caspase-1 inhibitory peptide, respectively. The ontogeny of TLR8 agonist-induced cytokine responses was defined in rhesus macaque whole blood ex vivo.
Results: IMQs were more potent and effective than alum at inducing TNF and IL-1β from monocytes. 3M-002 induced robust TLR pathway transcriptome activation and T(H)1-polarizing cytokine production in neonatal and adult monocytes and MoDCs, signaling through TLR8 in an adenosine/cyclic AMP-refractory manner. Newborn MoDCs displayed impaired LPS/ATP-induced caspase-1-mediated IL-1β production but robust 3M-002-induced caspase-1-mediated inflammasome activation independent of exogenous ATP. TLR8 IMQs induced robust TNF and IL-1β in whole blood of rhesus macaques at birth and infancy.
Conclusions: IMQ TLR8 agonists engage adenosine-refractory TLR8 and inflammasome pathways to induce robust monocyte and MoDC activation and represent promising neonatal adjuvants.
Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.