Background: We previously demonstrated upregulation of c-myc, survivin, and cyclin D1 in CD34+ bone marrow mononuclear cells (BMMNCs) of patients with trisomy 8 and monosomy 7 myelodysplastic syndromes (MDS). "Knockdown" of cyclin D1 by RNA interference decreased trisomy 8 cell growth, suggesting that this might be a therapeutic target in MDS.
Experimental design: We performed preclinical studies using BMMNCs from patients with MDS and AML to examine the effects of the styryl sulfone ON 01910.Na on cyclin D1 accumulation, aneuploidy, and CD34+ blast percentage. We next treated twelve patients with higher risk MDS and two trisomy 8 AML patients with ON 01910.Na on a phase I clinical protocol (NCT00533416).
Results: ON 01910.Na inhibited cyclin D1 expression, and was selectively toxic to trisomy 8 cells in vitro. Flow cytometry studies demonstrated increased mature CD15+ myeloid cells and decreased CD34+ blasts. Three patients treated with ON 01910.Na on a clinical had decreased bone marrow blasts by ≥ 50%, and three patients had hematologic improvements, one of which was sustained for 33 months. Patients with hematologic responses to ON 01910.Na had decreased cyclin D1 expression in their CD34+ cells.
Conclusions: The preclinical results and responses of patients on a clinical trial warrant further investigation of ON 01910.Na as a potential novel targeted therapy for higher risk MDS patients.
Published by Elsevier Ltd.