Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes

J Am Chem Soc. 2012 Jun 6;134(22):9400-5. doi: 10.1021/ja302436q. Epub 2012 May 25.

Abstract

A new route to convert crude microalgae oils using ZrO(2)-promoted Ni catalysts into diesel-range alkanes in a cascade reaction is presented. Ni nanoparticles catalyze the selective cleavage of the C-O of fatty acid esters, leading to the hydrogenolysis of triglycerides. Hydrogenation of the resulting fatty acids to aldehydes (rate-determining step) is uniquely catalyzed via two parallel pathways, one via aldehyde formation on metallic Ni and the second via a synergistic action by Ni and ZrO(2) through adsorbing the carboxylic groups at the oxygen vacancies of ZrO(2) to form carboxylates and subsequently abstracting the α-hydrogen atom to produce ketene, which is in turn hydrogenated to aldehydes and decarbonylated on Ni nanoparticles.