Objectives: The aim of this study was to investigate the impact of rs5065 atrial natriuretic peptide (ANP) gene variant on coronary artery disease (CAD) and its outcomes and to gain potential mechanistic insights on the association with CAD.
Background: Either modified ANP plasma levels or peptide structural alterations have been involved in development of cardiovascular events.
Methods: Three hundred ninety-three control subjects and 1,004 patients undergoing coronary angiography for suspected CAD (432 stable angina [SA], 572 acute coronary syndrome [ACS]) were genotyped for rs5065 ANP gene variant. Data in SA and ACS groups were replicated in an independent population of 482 stable angina patients (rSA) and of 675 ACS patients, respectively. Clinical follow-up was available for both SA and rSA patients. Plasma N-terminal-proANP, myeloperoxidase, lipoprotein-associated phospholipase A2, and oxidized low-density lipoprotein were assessed in a subgroup of rSA patients.
Results: rs5065 minor allele (MA) was an independent predictor of ACS (odds ratio: 1.90; 95% confidence interval: 1.40 to 2.58, p < 0.001). At follow-up, rs5065 MA was independently associated with a significantly higher rate of major adverse cardiovascular events in the SA group, p < 0.001. Data were replicated in the rSA group at follow-up (p = 0.008). Cox proportional hazard analysis tested by 4 models confirmed higher major adverse cardiovascular events risk in rs5065 MA carriers in both SA and rSA cohorts. Significantly higher myeloperoxidase levels were detected in rs5065 MA carriers (n = 597 [345 to 832 μg/l] vs. n = 488 [353 to 612 μg/l], p = 0.038). No association of rs5065 was observed with N-terminal-proANP levels.
Conclusions: The MA of rs5065 ANP gene variant associates with increased susceptibility to ACS and has unfavorable prognostic value in CAD.
Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.