Optimizing transition states via kernel-based machine learning

J Chem Phys. 2012 May 7;136(17):174101. doi: 10.1063/1.4707167.

Abstract

We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Computational Biology*
  • Molecular Dynamics Simulation
  • Software
  • Support Vector Machine*
  • Surface Properties