Sertoli cell tight junctions (TJs) form at puberty as a major component of the blood-testis barrier (BTB), which is essential for spermatogenesis. This study characterized the hormonal induction of functional Sertoli cell TJ formation in vivo using the gonadotropin-deficient hypogonadal (hpg) mouse that displays prepubertal spermatogenic arrest. Androgen actions were determined in hpg mice treated for 2 or 10 days with dihydrotestosterone (DHT). Follicle-stimulating hormone (FSH) actions were studied in hpg mice expressing transgenic human FSH (hpg+tgFSH) with or without DHT treatment. TJ formation was examined by mRNA expression and immunolocalization of TJ proteins claudin-3 and claudin-11, and barrier functionality was examined by biotin tracer permeability. Immunolocalization of claudin-3 and claudin-11 was extensive at wild-type (wt) Sertoli cell TJs, which functionally excluded permeability tracer. In contrast, seminiferous tubules of hpg testes lacked claudin-3, but claudin-11 protein was present in adluminal regions of Sertoli cells. Biotin tracer permeated throughout these tubules, demonstrating dysfunctional TJs. In hpg+tgFSH testes, claudin-3 was generally absent, but claudin-11 had redistributed basally toward the TJs, where function was variable. In hpg testes, DHT treatment stimulated the redistribution of claudin-11 protein toward the basal region of Sertoli cells by Day 2, increased Cldn3 and Cldn11 mRNA expression, then induced the formation of functional TJs containing both proteins by Day 10. In hpg+tgFSH testes, TJ protein redistribution was accelerated and functional TJs formed by Day 2 of DHT treatment. We conclude that androgen stimulates initial Sertoli cell TJ formation and function in mice, whereas FSH activity is insufficient alone, but augments androgen-induced TJ function.