Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging

Aging Cell. 2012 Oct;11(5):741-50. doi: 10.1111/j.1474-9726.2012.00840.x. Epub 2012 Jun 26.

Abstract

A spectral analysis approach was developed for detailed study of time-resolved, dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion to identify differences in VSMC from young and aged monkeys. Atomic force microscopy (AFM) was used to measure Young's modulus of elasticity and adhesion as assessed by fibronectin (FN) or anti-beta 1 integrin interaction with the VSMC surface. Measurements demonstrated that VSMC cells from old vs. young monkeys had increased elasticity (21.6 kPa vs. 3.5 kPa or a 612% increase in elastic modulus) and adhesion (86 pN vs. 43 pN or a 200% increase in unbinding force). Spectral analysis identified three major frequency components in the temporal oscillation patterns for elasticity (ranging from 1.7 × 10(-3) to 1.9 × 10(-2) Hz in old and 8.4 × 10(-4) to 1.5 × 10(-2) Hz in young) and showed that the amplitude of oscillation was larger (P < 0.05) in old than in young at all frequencies. It was also observed that patterns of oscillation in the adhesion data were similar to the elasticity waveforms. Cell stiffness was reduced and the oscillations were inhibited by treatment with cytochalasin D, ML7 or blebbistatin indicating the involvement of actin-myosin-driven processes. In conclusion, these data demonstrate the efficacy of time-resolved analysis of AFM cell elasticity and adhesion measurements and that it provides a uniquely sensitive method to detect real-time functional differences in biomechanical and adhesive properties of cells. The oscillatory behavior suggests that mechanisms governing elasticity and adhesion are coupled and affected differentially during aging, which may link these events to changes in vascular stiffness.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aging / metabolism
  • Aging / physiology*
  • Animals
  • Azepines / pharmacology
  • Cell Adhesion / physiology
  • Cells, Cultured
  • Cellular Senescence / physiology*
  • Cytochalasin D / pharmacology
  • Elasticity / drug effects
  • Extracellular Matrix / metabolism
  • Fibronectins / metabolism
  • Haplorhini
  • Heterocyclic Compounds, 4 or More Rings / pharmacology
  • Integrins / metabolism
  • Male
  • Microscopy, Atomic Force / methods
  • Muscle, Smooth, Vascular / cytology*
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / metabolism
  • Naphthalenes / pharmacology

Substances

  • Azepines
  • Fibronectins
  • Heterocyclic Compounds, 4 or More Rings
  • Integrins
  • Naphthalenes
  • ML 7
  • blebbistatin
  • Cytochalasin D