A new phase-measurement technique is proposed, which utilizes a three-beam interferometer. Three-wave interference in the interferometer generates a uniform lattice of optical vortices, which is distorted by the presence of an object inserted in one arm of the interferometer. The transverse displacement of the vortices is proportional to the phase shift in the object wave. Tracking the vortices permits the phase of the object to be reconstructed. We demonstrate the method experimentally using a simple lens and a more complex object, namely the wing of a common house fly. Since the technique is implemented in real space, it is capable of reconstructing the phase locally.