Giant panda (Ailuropoda melanoleuca) monitoring and research often require accurate estimates of population size and density. However, obtaining these estimates has been challenging. Innovative technologies, such as fecal near infrared reflectance spectroscopy (FNIRS), may be used to differentiate between sex, age class, and reproductive status as has been shown for several other species. The objective of this study was to determine if FNIRS could be similarly used for giant panda physiological discriminations. Based on samples from captive animals in four U.S. zoos, FNIRS calibrations correctly identified 78% of samples from adult males, 81% from adult females, 85% from adults, 89% from juveniles, 75% from pregnant and 70% from non-pregnant females. However, diet had an impact on the success of the calibrations. When diet was controlled for plant part such that "leaf only" feces were evaluated, FNIRS calibrations correctly identified 93% of samples from adult males and 95% from adult females. These data show that FNIRS has the potential to differentiate between the sex, age class, and reproductive status in the giant panda and may be applicable for surveying wild populations.