Combined transfection of the three transcriptional factors, PDX-1, NeuroD1, and MafA, causes differentiation of bone marrow mesenchymal stem cells into insulin-producing cells

Exp Diabetes Res. 2012:2012:672013. doi: 10.1155/2012/672013. Epub 2012 Jun 19.

Abstract

Aims: The goal of cell transcription for treatment of diabetes is to generate surrogate β-cells from an appropriate cell line. However, the induced replacement cells have showed less physiological function in producing insulin compared with normal β-cells.

Methods: Here, we report a procedure for induction of insulin-producing cells (IPCs) from bone marrow murine mesenchymal stem cells (BM-mMSCs). These BM-mMSCs have the potential to differentiate into insulin-producing cells when a combination of PDX-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation-1), and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A) genes are transfected into them and expressed in these cells.

Results: Insulin biosynthesis and secretion were induced in mMSCs into which these three genes have been transfected and expressed. The amount of induced insulin in the mMSCs which have been transfected with the three genes together is significantly higher than in those mMSCs that were only transfected with one or two of these three genes. Transplantation of the transfected cells into mice with streptozotocin-induced diabetes results in insulin expression and the reversal of the glucose challenge.

Conclusions: These findings suggest major implications for cell replacement strategies in generation of surrogate β-cells for the treatment of diabetes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / metabolism
  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / metabolism*
  • Bone Marrow Cells / cytology*
  • Cell Differentiation
  • Cell Transplantation
  • Diabetes Mellitus / metabolism
  • HEK293 Cells
  • Homeodomain Proteins / metabolism*
  • Humans
  • Immunohistochemistry / methods
  • Insulin / metabolism*
  • Insulin-Secreting Cells / cytology
  • Maf Transcription Factors, Large / metabolism*
  • Mesenchymal Stem Cells / cytology*
  • Mice
  • Mice, Inbred C57BL
  • Nerve Tissue Proteins / metabolism*
  • Trans-Activators / metabolism*
  • Transfection

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • Homeodomain Proteins
  • Insulin
  • Maf Transcription Factors, Large
  • Mafa protein, mouse
  • Nerve Tissue Proteins
  • Trans-Activators
  • pancreatic and duodenal homeobox 1 protein
  • Neurogenic differentiation factor 1