Interferon-γ (IFN-γ) is essential for host defense against intracellular pathogens. Stimulation of innate immune cells by IFN-γ upregulates ∼2,000 effector genes such as immunity-related GTPases including p65 guanylate-binding protein (Gbp) family genes. We show that a cluster of Gbp genes was required for host cellular immunity against the intracellular parasite Toxoplasma gondii. We generated mice deficient for all six Gbp genes located on chromosome 3 (Gbp(chr3)) by targeted chromosome engineering. Mice lacking Gbp(chr3) were highly susceptible to T. gondii infection, resulting in increased parasite burden in immune organs. Furthermore, Gbp(chr3)-deleted macrophages were defective in IFN-γ-mediated suppression of T. gondii intracellular growth and recruitment of IFN-γ-inducible p47 GTPase Irgb6 to the parasitophorous vacuole. In addition, some members of Gbp(chr3) restored the protective response against T. gondii in Gbp(chr3)-deleted cells. Our results suggest that Gbp(chr3) play a pivotal role in anti-T. gondii host defense by controlling IFN-γ-mediated Irgb6-dependent cellular innate immunity.
Copyright © 2012 Elsevier Inc. All rights reserved.