Viral vectors, except for their safety concern, have shown high efficiency in both delivery and expression of gene. Here, a series of new gene carriers, comprised of short peptide subunits with special functions to imitate viral vectors, were designed and three vectors, (C(18))(2)KH(4)R(8)GDS, AcKH(4)R(8)GDS and (C(18))(2)KH(4)R(8), designated as ARM1, ARM2, ARM3, respectively, were synthesized and evaluated. The transfection efficiency in vitro was studied in terms of 293T, HepG2 and HeLa cell lines. It was found that the transfection efficiency was enhanced significantly for the vectors (ARM1 and ARM3) with double hydrophobic aliphatic tails. Interestingly, the conjugation of RGDS sequence in vectors displayed no obvious difference in cell adhesion for all of the three cell lines. Moreover, confocal laser scanning microscope results indicated that the peptide/pDNA complexes can enter the cell and nuclei successfully. On the other hand, all the vectors displayed low cytotoxicity. The artificial recombinant multi-block oligopeptides (ARMs) demonstrated here might give a promising potential of the peptide-based vectors in gene therapy.
Copyright © 2012 Elsevier B.V. All rights reserved.