Objective: To establish and characterize imatinib-resistant gastrointestinal stromal tumor (GIST) xenografts. Further provided an ideal experimental platform through the imatinib-resistant GIST xenografts to investigate the mechanism of resistance to imatinib.
Methods: Imatinib-resistant GIST cells were injected under the skin of athymic nude mice to establish animal models of human imatinib-resistant GIST. The molecular and histopathologic features of GIST xenografts were also analysed and compared with their counterpart of cell lines.
Results: The xenograft tumor models had been established by subcutaneously injection of GIST cells into nude mice. Immunohistochemistry results showed CD117 expression was positive in GIST-PR2 xenograft tumor, but negative in GIST-R. In GIST-PR1, tumor areas showing rhabdomyoblastic differentiation were presented next to areas with classic GIST morphology. The rhabdomyoblastic component demonstrated consistently positivity for desmin and myogenin, whereas CD117 was completely negative. The mutation profiles of these xenograft tumors were the same as their counterpart of cell lines.
Conclusions: Human GIST xenografts with mutation in c-kit have been established from imatinib-resistant GIST lines. Those models will enable further studies on mechanisms of resistance, combination therapies and allow testing of novel targeted therapies.