Cellular and molecular properties of (90)Y-labeled cetuximab in combination with radiotherapy on human tumor cells in vitro

Strahlenther Onkol. 2012 Sep;188(9):823-32. doi: 10.1007/s00066-012-0121-4. Epub 2012 Aug 10.

Abstract

Purpose: Anti-EGFR antibody cetuximab (C225) is used in combination with radiotherapy of head and neck squamous cell carcinoma (HNSCC) patients. We investigated whether conjugation of cetuximab with trans-cyclohexyl-diethylene-triamine-pentaacetic acid (CHX-A″-DTPA) and radiolabeling with (90)Yttrium affect the molecular and cellular function of cetuximab and improve its combined effect with external-beam irradiation (EBI).

Methods: The following cell lines were used: HNSCC UT5, SAS, FaDu, as well as A43, Chinese hamster ovary cells (CHO), and human skin fibroblast HSF7. Binding affinity and kinetics, specificity, retention, and the combination of (90)Y-cetuximab with EBI were evaluated.

Results: Control cetuximab and CHX-A″-DTPA-cetuximab blocked the proliferation activity of UT5 cells. In combination with EBI, CHX-A″-DTPA-cetuximab increased the radiosensitivity of UT5 to a similar degree as control cetuximab did. In contrast, in SAS and HSF7 cells neither proliferation nor radiosensitivity was affected by either of the antibodies. Binding [(90)Y]Y-CHX-A″-DTPA-cetuximab ((90)Y-cetuximab) to EGFR in HNSCC cells occurred time dependently with a maximum binding at 24 h. Retention of (90)Y-cetuximab was similar in both HNSCC cell lines; 24 h after treatment, approximately 90% of bound activity remained in the cell layer. Competition assays, using cell membranes in the absence of an internalized fraction of cetuximab, showed that the cetuximab affinity is not lost as a result of conjugation with CHX-A″-DTPA. Cetuximab and CHX-A″-DTPA-cetuximab blocked EGF-induced Y1068 phosphorylation of EGFR. The lack of an effect of cetuximab on EGF-induced Akt and ERK1/2 phosphorylation and the inhibition of irradiation (IR)-induced Akt and ERK1/2 phosphorylation by cetuximab were not affected by DTPA conjugation. (90)Y-cetuximab in combination with EBI resulted in a pronounced inhibition of colony formation of HNSCC cells.

Conclusions: Conjugation of CHX-A″-DTPA to cetuximab does not alter the cellular and biological function of cetuximab. (90)Y-labeling of cetuximab in combination with EBI may improve radiotherapy outcome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / administration & dosage*
  • Antibodies, Monoclonal, Humanized
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Cetuximab
  • Chemoradiotherapy, Adjuvant / methods*
  • Cricetinae
  • Humans
  • Neoplasms, Experimental / physiopathology*
  • Neoplasms, Experimental / radiotherapy*
  • Radiation Dosage
  • Radiotherapy, Conformal / methods*
  • Yttrium Radioisotopes / administration & dosage*

Substances

  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • Yttrium Radioisotopes
  • Cetuximab