Motivation: RNA-seq has been widely used in transcriptome analysis to effectively measure gene expression levels. Although sequencing costs are rapidly decreasing, almost 70% of all the human RNA-seq samples in the gene expression omnibus do not have biological replicates and more unreplicated RNA-seq data were published than replicated RNA-seq data in 2011. Despite the large amount of single replicate studies, there is currently no satisfactory method for detecting differentially expressed genes when only a single biological replicate is available.
Results: We present the GFOLD (generalized fold change) algorithm to produce biologically meaningful rankings of differentially expressed genes from RNA-seq data. GFOLD assigns reliable statistics for expression changes based on the posterior distribution of log fold change. In this way, GFOLD overcomes the shortcomings of P-value and fold change calculated by existing RNA-seq analysis methods and gives more stable and biological meaningful gene rankings when only a single biological replicate is available.
Availability: The open source C/C++ program is available at http://www.tongji.edu.cn/∼zhanglab/GFOLD/index.html