In this work we demonstrate a design for obtaining laser backlighting (e.g., interferometry) and time-resolved extreme ultraviolet self-emission images along the same line-of-sight. This is achieved by modifying a single optical component in the laser collection optics with apertures and pinhole arrangements suitable for single or multiple frame imaging onto a gated detector, such as a microchannel plate. Test results for exploding wire experiments show that machining of the optic does not affect the overall quality of the recovered laser images, and that, even with a multiple frame system, the area sacrificed to achieve collinear imaging is relatively small. The diagnostics can therefore allow direct correlation of laser and self-emission images and their derived quantities, such as electron density in the case of interferometry. Simple methods of image correlation are also demonstrated.