In vivo 31P-NMR spectroscopy was used to monitor the energy metabolism, apparent intracellular pH (pHNMR), and phospholipid turnover in subcutaneous fibrosarcomas (FSall) and mammary carcinomas (MCaIV) treated with hyperthermia (HT). Treatment consisted of elevation of tumour temperature to 43.5 degrees C for 15, 30 or 60 min (FSall) and 30 min (MCaIV). Experiments were performed on conscious mice with biologically relevant tumour sizes. Using water bath immersion, this study focused on acute heat-induced metabolic changes (up to 7 h post-HT). 31P-NMR spectra of both murine tumours were characterized by relatively high pretreatment levels of PME, Pi and NTP, and lower levels of PDE, PCr and DPDE. Following hyperthermia, NTP and PCr levels, as well as pHNMR, decreased in both tumour lines. This drop was accompanied by a prompt and dramatic increase in Pi. After heating for 15 min, the limited spectral changes observed for the high-energy phosphates and the marginal decline in pHNMR were nullified within 7 h, whereas Pi remained significantly elevated. With the exception of PME/NTP and PME/PDE, all relevant metabolic ratios (PCr/Pi, NTP/Pi, PME/Pi) decreased after heating and did not resolve thereafter. Upon longer heat exposure times the high-energy phosphates, pHNMR, NTP/Pi, PCr/Pi, and PME/Pi all decreased in a dose-dependent manner and remained at the respective lower levels. The PME/PDE ratio was increased after 43.5 degrees C/15 min whereas at longer heating times this ratio did not change. At comparable heat doses MCaIV tumours seem to exhibit changes similar to FSall tumours.