Full electric-field control of spin orientations is one of the key tasks in semiconductor spintronics. We demonstrate that electric-field pulses can be utilized for phase-coherent ±π spin rotation of optically generated electron spin packets in InGaAs epilayers detected by time-resolved Faraday rotation. Through spin-orbit interaction, the electric-field pulses act as local magnetic field pulses. By the temporal control of the local magnetic field pulses, we can turn on and off electron spin precession and thereby rotate the spin direction into arbitrary orientations in a two-dimensional plane. Furthermore, we demonstrate a spin-echo-type spin drift experiment and find an unexpected partial spin rephasing, which is evident by a doubling of the spin dephasing time.