Microstructural changes in the hippocampus and posterior cingulate in mild cognitive impairment and Alzheimer's disease: a diffusion tensor imaging study

Neurol Sci. 2013 Jul;34(7):1215-21. doi: 10.1007/s10072-012-1225-4. Epub 2012 Oct 30.

Abstract

Diffusion tensor imaging (DTI) is a sensitive MRI technique in the detection of white matter degeneration. We sought to demonstrate microstructural changes in normal controls, patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) and to determine which DTI parameters could be a reliable tool for the early diagnosis of AD. In total, 90 participants (35 normal, 20 aMCI, 35 AD) were recruited. We included early AD patients with clinical dementia rating scores of 0.5 and 1. The fractional anisotropy and mean diffusivity values, DTI parameter, were measured with the regions of interest method in the bilateral hippocampal body and posterior cingulate. Clinical history, neurological examination, and neuropsychological assessments were conducted. The DTI parameters in the bilateral hippocampus and posterior cingulate in aMCI and AD were different from those in normal controls. No difference was found in DTI parameters of the posterior cingulate between aMCI and AD. However, hippocampal DTI parameters were different between aMCI and AD. Cognitive summary measures were significantly correlated with DTI parameters, especially FA values in the hippocampus. The DTI analysis technique demonstrated significant microstructural alterations in the hippocampus and posterior cingulate already in prodromal stage of AD. DTI parameters in the hippocampus may be a more sensitive method to determine microstructural changes in early AD states and more correlated with cognition than DTI parameters in the posterior cingulate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease / diagnosis*
  • Alzheimer Disease / metabolism
  • Cognitive Dysfunction / diagnosis*
  • Cognitive Dysfunction / metabolism
  • Cross-Sectional Studies
  • Diffusion Tensor Imaging / methods*
  • Female
  • Gyrus Cinguli / pathology*
  • Hippocampus / pathology*
  • Humans
  • Male