Viral tracing of genetically defined neural circuitry

J Vis Exp. 2012 Oct 17:(68):4253. doi: 10.3791/4253.

Abstract

Classical methods for studying neuronal circuits are fairly low throughput. Transsynaptic viruses, particularly the pseudorabies (PRV) and rabies virus (RABV), and more recently vesicular stomatitis virus (VSV), for studying circuitry, is becoming increasingly popular. These higher throughput methods use viruses that transmit between neurons in either the anterograde or retrograde direction. Recently, a modified RABV for monosynaptic retrograde tracing was developed. (Figure 1A). In this method, the glycoprotein (G) gene is deleted from the viral genome, and resupplied only in targeted neurons. Infection specificity is achieved by substituting a chimeric G, composed of the extracellular domain of the ASLV-A glycoprotein and the cytoplasmic domain of the RABV-G (A/RG), for the normal RABV-G(1). This chimeric G specifically infects cells expressing the TVA receptor(1). The gene encoding TVA can been delivered by various methods(2-8). Following RABV-G infection of a TVA-expressing neuron, the RABV can transmit to other, synaptically connected neurons in a retrograde direction by nature of its own G which was co-delivered with the TVA receptor. This technique labels a relatively large number of inputs (5-10%)(2) onto a defined cell type, providing a sampling of all of the inputs onto a defined starter cell type. We recently modified this technique to use VSV as a transsynaptic tracer(9). VSV has several advantages, including the rapidity of gene expression. Here we detail a new viral tracing system using VSV useful for probing microcircuitry with increased resolution. While the original published strategies by Wickersham et al.(4) and Beier et al.(9) permit labeling of any neurons that project onto initially-infected TVA-expressing-cells, here VSV was engineered to transmit only to TVA-expressing cells (Figure 1B). The virus is first pseudotyped with RABV-G to permit infection of neurons downstream of TVA-expressing neurons. After infecting this first population of cells, the virus released can only infect TVA-expressing cells. Because the transsynaptic viral spread is limited to TVA-expressing cells, presence of absence of connectivity from defined cell types can be explored with high resolution. An experimental flow chart of these experiments is shown in Figure 2. Here we show a model circuit, that of direction-selectivity in the mouse retina. We examine the connectivity of starburst amacrine cells (SACs) to retinal ganglion cells (RGCs).

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Amacrine Cells / physiology
  • Amacrine Cells / virology
  • Animals
  • Mice
  • Neural Pathways / physiology*
  • Neural Pathways / virology*
  • Neurons / physiology
  • Neurons / virology
  • Retinal Ganglion Cells / physiology
  • Retinal Ganglion Cells / virology
  • Synapses / physiology
  • Synapses / virology
  • Vesiculovirus / genetics
  • Vesiculovirus / physiology*