Light-weight nanocomposites filled with carbon nanotubes (CNTs) are developed for their significant potentials in electromagnetic shielding and attenuation for wide applications in electronics, communication devices, and specific parts in aircrafts and vehicles. Specifically, the introduction of a second phase into/onto CNTs for achieving CNT-based heterostructures has been widely pursued due to the enhancement in either dielectric loss or magnetic loss. In this work, ferroferric oxide (Fe(3)O(4)) was selected as the phase in multiwalled carbon nanotube (MWCNT)-based composites for enhancing magnetic properties to obtain improved electromagnetic attenuation. A direct comparison between the two-phase heterostructures (Fe(3)O(4)/MWCNTs) and polyaniline (PANI) coated Fe(3)O(4)/MWCNTs, namely, three-phase heterostructures (PANI/Fe(3)O(4)/MWCNTs), was made to investigate the interface influences of Fe(3)O(4) and PANI on the complex permittivity and permeability separately. Compared to PANI/Fe(3)O(4)/MWCNTs, Fe(3)O(4)/MWCNTs exhibited enhanced magnetic properties coupled with increased dielectric properties. Interfaces between MWCNTs and heterostructures were found to play a role in the corresponding properties. The evaluation of microwave absorption of their wax composites was carried out, and the comparison between Fe(3)O(4)/MWCNTs and PANI/Fe(3)O(4)/MWCNTs with respect to highly efficient microwave absorption and effective absorption bandwidth was discussed.