DNA Helicases in NER, BER, and MMR

Adv Exp Med Biol. 2013:767:203-24. doi: 10.1007/978-1-4614-5037-5_10.

Abstract

Different DNA repair mechanisms have evolved to protect our genome from modifications caused by endogenous and exogenous agents, thus maintaining the integrity of the DNA. Helicases often play a central role in these repair pathways and have shown to be essential for diverse tasks within these mechanisms. In prokaryotic nucleotide excision repair (NER) for example the two helicases UvrB and UvrD assume vastly different functions. While UvrB is intimately involved in damage verification and acts as an anchor for the other prokaryotic NER proteins UvrA and UvrC, UvrD is required to resolve the post-incision complex leading to the release of UvrC and the incised ssDNA fragment. For the XPD helicase in eukaryotic NER a similar function in analogy to UvrB has been proposed, whereas XPB the second helicase uses only its ATPase activity during eukaryotic NER. In prokaryotic mismatch repair (MMR) UvrD again plays a central role. The different tasks of this protein in the different repair pathways highlight the importance of regulative protein-protein interactions to fine-tune its helicase activity. In other DNA repair pathways the role of the helicases involved is sometimes not as well characterized, and no helicase has so far been described to assume the function of UvrD in eukaryotic MMR. RecQ helicases and FancJ interact with eukaryotic MMR proteins but their involvement in this repair pathway is unclear. Lastly, long-patch base excision repair is linked to the WRN helicase and many proteins within this pathway interact with the helicase leading to increased activity of the interacting proteins as observed for pol β and FEN-1 or the helicase itself is negatively regulated through the interaction with APE-1. However, compared to the precise functions described for the helicases in the other DNA repair mechanisms the role of WRN in BER remains speculative and requires further analysis.

MeSH terms

  • DNA / metabolism
  • DNA Damage
  • DNA Helicases* / metabolism
  • DNA Mismatch Repair
  • DNA Repair*
  • RecQ Helicases / genetics

Substances

  • DNA
  • DNA Helicases
  • RecQ Helicases