Measles virus is a major public health concern worldwide. Three measles virus cell receptors have been identified so far, and the structures of the first two in complex with measles virus hemagglutinin (MV-H) have been reported. Nectin-4 is the most recently identified receptor in epithelial cells, and its binding mode to MV-H remains elusive. In this study, we solved the structure of the membrane-distal domain of human nectin-4 in complex with MV-H. The structure shows that nectin-4 binds the MV-H β4-β5 groove exclusively via its N-terminal IgV domain; the contact interface is dominated by hydrophobic interactions. The binding site in MV-H for nectin-4 also overlaps extensively with those of the other two receptors. Finally, a hydrophobic pocket centered in the β4-β5 groove is involved in binding to all three identified measles virus receptors, representing a potential target for antiviral drugs.