Background: The prevalence of autistic disorder (AD), a serious developmental condition, has risen dramatically over the past two decades, but high-quality population-based research addressing etiology is limited.
Objectives: We studied the influence of exposures to traffic-related air pollution during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures.
Methods: Children of mothers who gave birth in Los Angeles, California, who were diagnosed with a primary AD diagnosis at 3-5 years of age during 1998-2009 were identified through the California Department of Developmental Services and linked to 1995-2006 California birth certificates. For 7,603 children with autism and 10 controls per case matched by sex, birth year, and minimum gestational age, birth addresses were mapped and linked to the nearest air monitoring station and a LUR model. We used conditional logistic regression, adjusting for maternal and perinatal characteristics including indicators of SES.
Results: Per interquartile range (IQR) increase, we estimated a 12-15% relative increase in odds of autism for ozone [odds ratio (OR) = 1.12, 95% CI: 1.06, 1.19; per 11.54-ppb increase] and particulate matter ≤ 2.5 µm (OR = 1.15; 95% CI: 1.06, 1.24; per 4.68-μg/m3 increase) when mutually adjusting for both pollutants. Furthermore, we estimated 3-9% relative increases in odds per IQR increase for LUR-based nitric oxide and nitrogen dioxide exposure estimates. LUR-based associations were strongest for children of mothers with less than a high school education.
Conclusion: Measured and estimated exposures from ambient pollutant monitors and LUR model suggest associations between autism and prenatal air pollution exposure, mostly related to traffic sources.