Acute inflammation is a prominent feature of central nervous system (CNS) insult and is detrimental to the CNS tissue. Although this reaction spontaneously diminishes within a short period of time, the mechanism underlying this inflammatory resolution remains largely unknown. In this study, we demonstrated that an initial infiltration of Ly6C(+) Ly6G(-) immature monocyte fraction exhibited the same characteristics as myeloid-derived suppressor cells (MDSCs), and played a critical role in the resolution of acute inflammation and in the subsequent tissue repair by using mice spinal cord injury (SCI) model. Complete depletion of Ly6C(+) Ly6G(-) fraction prior to injury by anti-Gr-1 antibody (clone: RB6-8C5) treatment significantly exacerbated tissue edema, vessel permeability, and hemorrhage, causing impaired neurological outcomes. Functional recovery was barely impaired when infiltration was allowed for the initial 24 h after injury, suggesting that MDSC infiltration at an early phase is critical to improve the neurological outcome. Moreover, intraspinal transplantation of ex vivo-generated MDSCs at sites of SCI significantly reduced inflammation and promoted tissue regeneration, resulting in better functional recovery. Our findings reveal the crucial role of an Ly6C(+) Ly6G(-) fraction as MDSCs in regulating inflammation and tissue repair after SCI, and also suggests an MDSC-based strategy that can be applied to acute inflammatory diseases.
© 2012 International Society for Neurochemistry.