Built-in potential and charge distribution within single heterostructured nanorods measured by scanning Kelvin probe microscopy

Nano Lett. 2013 Mar 13;13(3):1278-84. doi: 10.1021/nl4000147. Epub 2013 Feb 8.

Abstract

The electrostatic potential distribution across single, isolated, colloidal heterostructured nanorods (NRs) with component materials expected to form a p-n junction within each NR has been measured using scanning Kelvin probe microscopy (SKPM). We compare CdS to bicomponent CdS-CdSe, CdS-PbSe, and CdS-PbS NRs prepared via different synthetic approaches to corroborate the SKPM assignments. The CdS-PbS NRs show a sharp contrast in measured potential across the material interface. We find the measured built-in potential within an individual NR to be attenuated by long-range electrostatic forces between the sample substrate, cantilever, and the measuring tip. Surface potential images were deconvoluted to yield built-in potentials ranging from 375 to 510 meV in the heterostructured NRs. We deduce the overall built-in potential as well as the charge distribution across each segment of the heterostructured NRs by combining SKPM data with simulations of the system.