Defensins are small cationic peptides that could be used as the potential substitute for antibiotics. However, there is no efficient method for producing defensins. In this study, we developed a new strategy to produce defensin in nitrate reductase (NR)-deficient C. ellipsoidea (nrm-4). We constructed a plant expression vector carrying mutated NP-1 gene (mNP-1), a mature α-defensin NP-1 gene from rabbit with an additional initiator codon in the 5'-terminus, in which the selection markers were NptII and NR genes. We transferred mNP-1 into nrm-4 using electroporation and obtained many transgenic lines with high efficiency under selection chemicals G418 and NaNO(3). The mNP-1 was characterized using N-terminal sequencing after being isolated from transgenic lines. Excitingly, mNP-1 was produced at high levels (approximately 11.42 mg/l) even after 15 generations of continuous fermentation. In addition, mNP-1 had strong activity against Escherichia coli at 5 µg/ml. This research developed a new method for producing defensins using genetic engineering.