The role of angiogenic factors and their soluble receptors in acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) associated with critical illness

J Inflamm (Lond). 2013 Feb 11;10(1):6. doi: 10.1186/1476-9255-10-6.

Abstract

Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by a disruption of the endothelium and alveolar epithelial barriers involving increased microvascular permeability, thus resulting in the set of protein-rich pulmonary edema. Angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)/VEGF-receptor (VEGFR) and the angiopoietin (Ang)/Tie2 signaling pathways, play pivotal roles in both angiogenesis and microvascular permeability. The aim of the study was to assess the relationship between angiogenic factors, their soluble receptors and ALI/ARDS associated with critically ill patients, including sepsis, severe trauma, and post-cardiac arrest syndrome (PCAS).

Methods: One hundred fifty-nine critically ill patients, including 50 patients with sepsis, 57 patients with severe trauma and 52 resuscitated after out-of-hospital cardiac arrest, were divided into three subgroups: including 25 ALI patients, 101 ARDS patients and 22 non-ALI/ARDS patients. The serum levels of angiogenic factors were measured at the time of admission (day 1), as well as day 3 and day 5 and then were compared among the ALI, ARDS and non-ALI/ARDS groups. Their predictive values for developing ALI/ARDS and 28-day mortality were evaluated.

Results: Higher levels of sVEGFR1 and Ang2 were observed in the ALI and ARDS patients than in the non-ALI/ARDS patients during the entire study period. The Ang2/Ang1 ratio in the ARDS group was also significantly higher than that in the non-ALI/ADRS group. The sVEGFR2 levels in the ARDS group on day 1 were significantly lower than those of the non-ALI/ADRS group. In addition, significant positive correlations were seen between the sVEGFR1, Ang2, Ang2/Ang1, and the development of ALI/ARDS in critical illness. There were also significant negative correlations between the minimal value of sVEGFR2, the maximal value of Ang1 and the ALI/ARDS group. In particular, sVEGFR2 and Ang2 were independent predictors of developing ALI/ARDS. Moreover, Ang2 and sVEGFR2 also independently predicted the mortality in ALI/ARDS patients.

Conclusions: Angiogenic factors and their soluble receptors, particularly sVEGFR2 and Ang2, are thus considered to be valuable predictive biomarkers in the development of ALI/ARDS associated with critical illness and mortality in ALI/ARDS patients.