Background: Inborn errors in Toll-like receptor 3 (TLR3)-IFN type I and III pathways have been implicated in susceptibility to herpes simplex virus encephalitis (HSE) in children, but most patients studied do not carry mutations in any of the genes presently associated with HSE susceptibility. Moreover, many patients do not display any TLR3-IFN-related fibroblastic phenotype.
Objective: To study other signaling pathways downstream of TLR3 and/or other independent pathways that may contribute to HSE susceptibility.
Methods: We used the stable isotope labeling of amino acids in cell culture proteomics methodology to measure changes in the human immortalized fibroblast proteome after TLR3 activation.
Results: Cells from healthy controls were compared with cells from a patient with a known genetic etiology of HSE (UNC-93B-/-) and also to cells from an HSE patient with an unknown gene defect. Consistent with known variation in susceptibility of individuals to viral infections, substantial variation in the response level of different healthy controls was observed, but common functional networks could be identified, including upregulation of superoxide dismutase 2. The 2 patients with HSE studied show clear differences in functional response networks when compared with healthy controls and also when compared with each other.
Conclusions: The present study delineates a number of novel proteins, TLR3-related pathways, and cellular phenotypes that may help elucidate the genetic basis of childhood HSE. Furthermore, our results reveal superoxide dismutase 2 as a potential therapeutic target for amelioration of the neurologic sequelae caused by HSE.
Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.