Background: Mitochondrial disorders (MD) are diseases caused by impairment of the mitochondrial respiratory chain. Phenotypes are polymorphous and may range from pure myopathy to multisystemic disorders. The genetic defect can be located on mitochondrial or nuclear DNA. At present, diagnosis of MD requires a complex approach: measurement of serum lactate, electromyography, muscle histology and enzymology, and genetic analysis. Magnetic resonance spectroscopy allows the assessment of tissue metabolic alterations, thus providing useful information for the diagnosis and monitoring of MD. Molecular soluble markers of mitochondrial dysfunction, at rest and during exercise, can identify the impairment of the aerobic system in MD, but a reliable biomarker for the screening or diagnosis of MD is still needed.
Objective: Molecular and genetic characterization of MD, together with other experimental approaches, contribute to add new insights to these diseases. Here, the role and advances of diagnostic techniques for MD are reviewed.
Conclusion: Possible applications of the results obtained by new molecular investigative approaches could in future guide therapeutic strategies.