Evaluation of glucose tolerance in rodent models is usually performed after intraperitroneal administration of glucose (intraperitoneal glucose tolerance test [IPGTT]), whereas in humans the test is performed with oral glucose. Hyperglycemia is a major clinical manifestation of burn injury. Our previous studies using IPGTT have demonstrated burn injury-induced insulin resistance and the beneficial effects of glucagon-like polypeptide-1 (GLP-1) in improving insulin resistance. The goal of the present study is to compare the results of these two procedures under 1) burn injury-induced insulin resistance and 2) GLP-1 treatment after burn. Male CD rats were divided into three groups: sham burn, burn, and burn with GLP-1. Blood glucose and plasma insulin levels were measured during intragastric glucose tolerance test (IGGTT) on day 6 after 40% of full-thickness burn injury. The results were compared with our previous IPGTT. Blood glucose curves for IGGTT and IPGTT showed a similar pattern. However, IGGTT demonstrated a significant lower level of maximal blood glucose when compared with IPGTT. This was accompanied by higher peak insulin levels in sham burn and burn groups. In contrast, peak insulin levels of each burn with GLP-1 group were similar. 1) Both IPGTT and IGGTT demonstrated burn injury-induced insulin resistance and the efficacy of GLP-1 for reducing hyperglycemia after burn injury. 2) The observed differences in the plasma glucose and insulin levels between IGGTT and IPGTT suggest that endogenously produced GLP-1 during the IGGTT may play a role in ameliorating insulin resistance after burn injury.