Lanthanide cuprates of formula Ln₂CuO₄ exist in two principal forms, T and T' which are renowned for their exhibition at low temperatures of hole and electronic types of superconductivity, respectively. These structures differ primarily in the arrangement of oxygen between the perovskite layers and also in nature of the copper oxygen planes. The Cu-O distance in the T structure (~1.90 Å) is much shorter than the T' (1.97Å), reflecting a transition between partial Cu⁺and partial Cu³⁺ character. In seeking to find compositions that bridge these two structure/electron carrier types, we observed the transition from a T structure to a T' type structure, resulting in the metastable form T″ with slightly larger volume but similar character to T'. This transition from T to T″ is associated with 5% increase in a and a 5% decrease in c parameters of the tetragonal unit cells, which results in disintegration of ceramic bodies.